6 A particle \(P\) of mass 0.2 kg is released from rest at a point \(O\) on a plane inclined at \(30 ^ { \circ }\) to the horizontal. At time \(t \mathrm {~s}\) after its release, \(P\) has velocity \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and displacement \(x \mathrm {~m}\) down the plane from \(O\). The coefficient of friction between \(P\) and the plane increases as \(P\) moves down the plane, and equals \(0.1 x ^ { 2 }\).
- Show that \(2 v \frac { \mathrm {~d} v } { \mathrm {~d} x } = 10 - ( \sqrt { } 3 ) x ^ { 2 }\).
- Calculate the maximum speed of \(P\).
- Find the value of \(x\) at the point where \(P\) comes to rest.