CAIE M2 (Mechanics 2) 2016 March

Question 1
View details
1 A particle is projected from a point on horizontal ground. At the instant 2 s after projection, the particle has travelled a horizontal distance of 30 m and is at its greatest height above the ground. Find the initial speed and the angle of projection of the particle.
Question 2
View details
2
\includegraphics[max width=\textwidth, alt={}, center]{334b4bdf-6d9c-4208-9032-572eb7c5f9ee-2_295_805_484_671} A uniform solid hemisphere of weight 60 N and radius 0.8 m rests in limiting equilibrium with its curved surface on a rough horizontal plane. The axis of symmetry of the hemisphere is inclined at an angle of \(\theta\) to the horizontal, where \(\cos \theta = 0.28\). Equilibrium is maintained by a horizontal force of magnitude \(P\) N applied to the lowest point of the circular rim of the hemisphere (see diagram).
  1. Show that \(P = 8.75\).
  2. Find the coefficient of friction between the hemisphere and the plane.
Question 3
View details
3 A stone is thrown with speed \(9 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(60 ^ { \circ }\) above the horizontal from a point on horizontal ground. Find the distance between the two points at which the path of the stone makes an angle of \(45 ^ { \circ }\) with the horizontal.
Question 4
View details
4
\includegraphics[max width=\textwidth, alt={}, center]{334b4bdf-6d9c-4208-9032-572eb7c5f9ee-2_549_579_1505_781} A uniform lamina is made by joining a rectangle \(A B C D\), in which \(A B = C D = 0.56 \mathrm {~m}\) and \(B C = A D = 2 \mathrm {~m}\), and a square \(E F G A\) of side 1.2 m . The vertex \(E\) of the square lies on the edge \(A D\) of the rectangle (see diagram). The centre of mass of the lamina is a distance \(h \mathrm {~m}\) from \(B C\) and a distance \(v \mathrm {~m}\) from \(B A G\).
  1. Find the value of \(h\) and show that \(v = h\). The lamina is freely suspended at the point \(B\) and hangs in equilibrium.
  2. State the angle which the edge \(B C\) makes with the horizontal. Instead, the lamina is now freely suspended at the point \(F\) and hangs in equilibrium.
  3. Calculate the angle between \(F G\) and the vertical.
Question 5
View details
5 A particle \(P\) of mass 0.6 kg is attached to one end of a light elastic string of natural length 0.8 m and modulus of elasticity 24 N . The other end of the string is attached to a fixed point \(A\), and \(P\) hangs in equilibrium.
  1. Calculate the extension of the string.
    \(P\) is projected vertically downwards from the equilibrium position with speed \(4.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  2. Find the distance \(A P\) when the speed of \(P\) is \(3.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(P\) is below the equilibrium position.
  3. Calculate the speed of \(P\) when it is 0.5 m above the equilibrium position.
Question 6
View details
6 A particle \(P\) of mass 0.2 kg is released from rest at a point \(O\) on a plane inclined at \(30 ^ { \circ }\) to the horizontal. At time \(t \mathrm {~s}\) after its release, \(P\) has velocity \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and displacement \(x \mathrm {~m}\) down the plane from \(O\). The coefficient of friction between \(P\) and the plane increases as \(P\) moves down the plane, and equals \(0.1 x ^ { 2 }\).
  1. Show that \(2 v \frac { \mathrm {~d} v } { \mathrm {~d} x } = 10 - ( \sqrt { } 3 ) x ^ { 2 }\).
  2. Calculate the maximum speed of \(P\).
  3. Find the value of \(x\) at the point where \(P\) comes to rest.
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{334b4bdf-6d9c-4208-9032-572eb7c5f9ee-3_451_432_1434_852} One end of a light inextensible string is attached to the highest point \(A\) of a solid fixed sphere with centre \(O\) and radius 0.6 m . The other end of the string is attached to a particle \(P\) of mass 0.2 kg which rests in contact with the smooth surface of the sphere. The angle \(A O P = 60 ^ { \circ }\) (see diagram). The sphere exerts a contact force of magnitude \(R \mathrm {~N}\) on \(P\) and the tension in the string is \(T \mathrm {~N}\).
  1. By resolving vertically, show that \(R + ( \sqrt { } 3 ) T = 4\).
    \(P\) is now set in motion, and moves with angular speed \(\omega \mathrm { rad } \mathrm { s } ^ { - 1 }\) in a horizontal circle on the surface of the sphere.
  2. Find an equation involving \(R , T\) and \(\omega\).
  3. Hence
    (a) calculate \(R\) when \(\omega = 2\),
    (b) find the greatest possible value of \(T\) and the corresponding speed of \(P\).