4 One end of a light inextensible string of length 2.4 m is attached to a fixed point \(A\). The other end of the string is attached to a particle \(P\) of mass \(0.2 \mathrm {~kg} . P\) moves with constant speed in a horizontal circle which has its centre vertically below \(A\), with the string taut and making an angle of \(60 ^ { \circ }\) with the vertical.
- Find the speed of \(P\).
The string of length 2.4 m is removed, and \(P\) is now connected to \(A\) by a light inextensible string of length 1.2 m . The particle \(P\) moves with angular speed \(4 \mathrm { rad } \mathrm { s } ^ { - 1 }\) in a horizontal circle with its centre vertically below \(A\).
- Calculate the angle between the string and the vertical.