6
\includegraphics[max width=\textwidth, alt={}, center]{9c82b387-8e5e-48b9-973d-5337b4e56a66-3_652_618_849_762}
A particle \(P\) of mass 0.6 kg is attached to one end of a light elastic string of natural length 1.5 m and modulus of elasticity 9 N . The string passes through a small smooth ring \(R\) fixed at a height of 0.4 m above a rough horizontal surface. The other end of the string is attached to a fixed point \(O\) which is 1.5 m vertically above \(R\). The points \(A\) and \(B\) are on the horizontal surface, and \(B\) is vertically below \(R\). When \(P\) is on the surface between \(A\) and \(B , R P\) makes an acute angle \(\theta ^ { \circ }\) with the horizontal (see diagram).
- Show that the normal force exerted on \(P\) by the surface has magnitude 3.6 N , for all values of \(\theta\).
\(P\) is projected with speed \(2.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) towards \(B\) from its initial position at \(A\) where \(\theta = 30\). The speed of \(P\) when it passes through \(B\) is \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). - Find the work done against friction as \(P\) moves from \(A\) to \(B\).
- Calculate the value of the coefficient of friction between \(P\) and the surface.