CAIE M2 2011 June — Question 7

Exam BoardCAIE
ModuleM2 (Mechanics 2)
Year2011
SessionJune
TopicCircular Motion 1

7
\includegraphics[max width=\textwidth, alt={}, center]{18398d27-15eb-4515-8210-4f0f614d5b28-4_713_933_258_605} A narrow groove is cut along a diameter in the surface of a horizontal disc with centre \(O\). Particles \(P\) and \(Q\), of masses 0.2 kg and 0.3 kg respectively, lie in the groove, and the coefficient of friction between each of the particles and the groove is \(\mu\). The particles are attached to opposite ends of a light inextensible string of length 1 m . The disc rotates with angular velocity \(\omega \mathrm { rad } \mathrm { s } ^ { - 1 }\) about a vertical axis passing through \(O\) and the particles move in horizontal circles (see diagram).
  1. Given that \(\mu = 0.36\) and that both \(P\) and \(Q\) move in the same horizontal circle of radius 0.5 m , calculate the greatest possible value of \(\omega\) and the corresponding tension in the string.
  2. Given instead that \(\mu = 0\) and that the tension in the string is 0.48 N , calculate
    (a) the radius of the circle in which \(P\) moves and the radius of the circle in which \(Q\) moves,
    (b) the speeds of the particles.