6
\includegraphics[max width=\textwidth, alt={}, center]{28562a1b-ec9a-40d2-bbb3-729770688971-3_218_1280_1146_431}
\(A B\) and \(B C\) are straight roads inclined at \(5 ^ { \circ }\) to the horizontal and \(1 ^ { \circ }\) to the horizontal respectively. \(A\) and \(C\) are at the same horizontal level and \(B\) is 45 m above the level of \(A\) and \(C\) (see diagram, which is not to scale). A car of mass 1200 kg travels from \(A\) to \(C\) passing through \(B\).
- For the motion from \(A\) to \(B\), the speed of the car is constant and the work done against the resistance to motion is 360 kJ . Find the work done by the car's engine from \(A\) to \(B\).
The resistance to motion is constant throughout the whole journey.
- For the motion from \(B\) to \(C\) the work done by the driving force is 1660 kJ . Given that the speed of the car at \(B\) is \(15 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), show that its speed at \(C\) is \(29.9 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), correct to 3 significant figures.
- The car's driving force immediately after leaving \(B\) is 1.5 times the driving force immediately before reaching \(C\). Find, correct to 2 significant figures, the ratio of the power developed by the car's engine immediately after leaving \(B\) to the power developed immediately before reaching \(C\).