6
\includegraphics[max width=\textwidth, alt={}, center]{5125fab5-0be5-4904-afdf-93e91b16e773-3_476_1305_1519_420}
A smooth slide \(A B\) is fixed so that its highest point \(A\) is 3 m above horizontal ground. \(B\) is \(h \mathrm {~m}\) above the ground. A particle \(P\) of mass 0.2 kg is released from rest at a point on the slide. The particle moves down the slide and, after passing \(B\), continues moving until it hits the ground (see diagram). The speed of \(P\) at \(B\) is \(v _ { B }\) and the speed at which \(P\) hits the ground is \(v _ { G }\).
- In the case that \(P\) is released at \(A\), it is given that the kinetic energy of \(P\) at \(B\) is 1.6 J . Find
(a) the value of \(h\),
(b) the kinetic energy of the particle immediately before it reaches the ground,
(c) the ratio \(v _ { G } : v _ { B }\). - In the case that \(P\) is released at the point \(X\) of the slide, which is \(H \mathrm {~m}\) above the ground (see diagram), it is given that \(v _ { G } : v _ { B } = 2.55\). Find the value of \(H\) correct to 2 significant figures.
\includegraphics[max width=\textwidth, alt={}, center]{5125fab5-0be5-4904-afdf-93e91b16e773-4_384_679_258_733}
Particles \(P\) and \(Q\), of masses 0.2 kg and 0.5 kg respectively, are connected by a light inextensible string. The string passes over a smooth pulley at the edge of a rough horizontal table. \(P\) hangs freely and \(Q\) is in contact with the table. A force of magnitude 3.2 N acts on \(Q\), upwards and away from the pulley, at an angle of \(30 ^ { \circ }\) to the horizontal (see diagram). - The system is in limiting equilibrium with \(P\) about to move upwards. Find the coefficient of friction between \(Q\) and the table.
The force of magnitude 3.2 N is now removed and \(P\) starts to move downwards.
- Find the acceleration of the particles and the tension in the string.
\footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
}