CAIE P1 2013 June — Question 6

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2013
SessionJune
TopicVectors: Lines & Planes

6 Relative to an origin \(O\), the position vectors of three points, \(A , B\) and \(C\), are given by $$\overrightarrow { O A } = \mathbf { i } + 2 p \mathbf { j } + q \mathbf { k } , \quad \overrightarrow { O B } = q \mathbf { j } - 2 p \mathbf { k } \quad \text { and } \quad \overrightarrow { O C } = - \left( 4 p ^ { 2 } + q ^ { 2 } \right) \mathbf { i } + 2 p \mathbf { j } + q \mathbf { k }$$ where \(p\) and \(q\) are constants.
  1. Show that \(\overrightarrow { O A }\) is perpendicular to \(\overrightarrow { O C }\) for all non-zero values of \(p\) and \(q\).
  2. Find the magnitude of \(\overrightarrow { C A }\) in terms of \(p\) and \(q\).
  3. For the case where \(p = 3\) and \(q = 2\), find the unit vector parallel to \(\overrightarrow { B A }\).