6 Relative to an origin \(O\), the position vectors of three points, \(A , B\) and \(C\), are given by
$$\overrightarrow { O A } = \mathbf { i } + 2 p \mathbf { j } + q \mathbf { k } , \quad \overrightarrow { O B } = q \mathbf { j } - 2 p \mathbf { k } \quad \text { and } \quad \overrightarrow { O C } = - \left( 4 p ^ { 2 } + q ^ { 2 } \right) \mathbf { i } + 2 p \mathbf { j } + q \mathbf { k }$$
where \(p\) and \(q\) are constants.
- Show that \(\overrightarrow { O A }\) is perpendicular to \(\overrightarrow { O C }\) for all non-zero values of \(p\) and \(q\).
- Find the magnitude of \(\overrightarrow { C A }\) in terms of \(p\) and \(q\).
- For the case where \(p = 3\) and \(q = 2\), find the unit vector parallel to \(\overrightarrow { B A }\).