A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q4
CAIE P1 2022 June — Question 4
Exam Board
CAIE
Module
P1 (Pure Mathematics 1)
Year
2022
Session
June
Topic
Reciprocal Trig & Identities
4
Prove the identity \(\frac { \sin ^ { 3 } \theta } { \sin \theta - 1 } - \frac { \sin ^ { 2 } \theta } { 1 + \sin \theta } \equiv - \tan ^ { 2 } \theta \left( 1 + \sin ^ { 2 } \theta \right)\).
Hence solve the equation $$\frac { \sin ^ { 3 } \theta } { \sin \theta - 1 } - \frac { \sin ^ { 2 } \theta } { 1 + \sin \theta } = \tan ^ { 2 } \theta \left( 1 - \sin ^ { 2 } \theta \right)$$ for \(0 < \theta < 2 \pi\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
4
Q6
Q7
Q8
Q9
Q10