A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q8
CAIE P1 2011 June — Question 8
Exam Board
CAIE
Module
P1 (Pure Mathematics 1)
Year
2011
Session
June
Topic
Reciprocal Trig & Identities
8
Prove the identity \(\left( \frac { 1 } { \sin \theta } - \frac { 1 } { \tan \theta } \right) ^ { 2 } \equiv \frac { 1 - \cos \theta } { 1 + \cos \theta }\).
Hence solve the equation \(\left( \frac { 1 } { \sin \theta } - \frac { 1 } { \tan \theta } \right) ^ { 2 } = \frac { 2 } { 5 }\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10