CAIE P1 (Pure Mathematics 1) 2011 June

Question 1
View details
1 The coefficient of \(x ^ { 3 }\) in the expansion of \(( a + x ) ^ { 5 } + ( 1 - 2 x ) ^ { 6 }\), where \(a\) is positive, is 90 . Find the value of \(a\).
Question 2
View details
2 Find the set of values of \(m\) for which the line \(y = m x + 4\) intersects the curve \(y = 3 x ^ { 2 } - 4 x + 7\) at two distinct points.
Question 3
View details
3 The line \(\frac { x } { a } + \frac { y } { b } = 1\), where \(a\) and \(b\) are positive constants, meets the \(x\)-axis at \(P\) and the \(y\)-axis at \(Q\). Given that \(P Q = \sqrt { } ( 45 )\) and that the gradient of the line \(P Q\) is \(- \frac { 1 } { 2 }\), find the values of \(a\) and \(b\).
Question 4
View details
4
  1. Differentiate \(\frac { 2 x ^ { 3 } + 5 } { x }\) with respect to \(x\).
  2. Find \(\int ( 3 x - 2 ) ^ { 5 } \mathrm {~d} x\) and hence find the value of \(\int _ { 0 } ^ { 1 } ( 3 x - 2 ) ^ { 5 } \mathrm {~d} x\).
Question 5
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{d68c82ec-8c85-40b9-8e81-bd53c7f8dafe-2_748_1155_1146_495} In the diagram, \(O A B C D E F G\) is a rectangular block in which \(O A = O D = 6 \mathrm {~cm}\) and \(A B = 12 \mathrm {~cm}\). The unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(\overrightarrow { O A } , \overrightarrow { O C }\) and \(\overrightarrow { O D }\) respectively. The point \(P\) is the mid-point of \(D G , Q\) is the centre of the square face \(C B F G\) and \(R\) lies on \(A B\) such that \(A R = 4 \mathrm {~cm}\).
  1. Express each of the vectors \(\overrightarrow { P Q }\) and \(\overrightarrow { R Q }\) in terms of \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\).
  2. Use a scalar product to find angle \(R Q P\).
Question 6
View details
6
  1. A geometric progression has a third term of 20 and a sum to infinity which is three times the first term. Find the first term.
  2. An arithmetic progression is such that the eighth term is three times the third term. Show that the sum of the first eight terms is four times the sum of the first four terms.
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{d68c82ec-8c85-40b9-8e81-bd53c7f8dafe-3_462_956_258_593} In the diagram, \(A B\) is an arc of a circle, centre \(O\) and radius 6 cm , and angle \(A O B = \frac { 1 } { 3 } \pi\) radians. The line \(A X\) is a tangent to the circle at \(A\), and \(O B X\) is a straight line.
  1. Show that the exact length of \(A X\) is \(6 \sqrt { } 3 \mathrm {~cm}\). Find, in terms of \(\pi\) and \(\sqrt { } 3\),
  2. the area of the shaded region,
  3. the perimeter of the shaded region.
Question 8
View details
8
  1. Prove the identity \(\left( \frac { 1 } { \sin \theta } - \frac { 1 } { \tan \theta } \right) ^ { 2 } \equiv \frac { 1 - \cos \theta } { 1 + \cos \theta }\).
  2. Hence solve the equation \(\left( \frac { 1 } { \sin \theta } - \frac { 1 } { \tan \theta } \right) ^ { 2 } = \frac { 2 } { 5 }\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
Question 9
View details
9 A curve is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { \sqrt { } x } - 1\) and \(P ( 9,5 )\) is a point on the curve.
  1. Find the equation of the curve.
  2. Find the coordinates of the stationary point on the curve.
  3. Find an expression for \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and determine the nature of the stationary point.
  4. The normal to the curve at \(P\) makes an angle of \(\tan ^ { - 1 } k\) with the positive \(x\)-axis. Find the value of \(k\).
Question 10
View details
10 Functions \(f\) and \(g\) are defined by $$\begin{aligned} & \mathrm { f } : x \mapsto 3 x - 4 , \quad x \in \mathbb { R } ,
& \mathrm {~g} : x \mapsto 2 ( x - 1 ) ^ { 3 } + 8 , \quad x > 1 . \end{aligned}$$
  1. Evaluate fg(2).
  2. Sketch in a single diagram the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\), making clear the relationship between the graphs.
  3. Obtain an expression for \(\mathrm { g } ^ { \prime } ( x )\) and use your answer to explain why g has an inverse.
  4. Express each of \(\mathrm { f } ^ { - 1 } ( x )\) and \(\mathrm { g } ^ { - 1 } ( x )\) in terms of \(x\).