5
\includegraphics[max width=\textwidth, alt={}, center]{d68c82ec-8c85-40b9-8e81-bd53c7f8dafe-2_748_1155_1146_495}
In the diagram, \(O A B C D E F G\) is a rectangular block in which \(O A = O D = 6 \mathrm {~cm}\) and \(A B = 12 \mathrm {~cm}\). The unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(\overrightarrow { O A } , \overrightarrow { O C }\) and \(\overrightarrow { O D }\) respectively. The point \(P\) is the mid-point of \(D G , Q\) is the centre of the square face \(C B F G\) and \(R\) lies on \(A B\) such that \(A R = 4 \mathrm {~cm}\).
- Express each of the vectors \(\overrightarrow { P Q }\) and \(\overrightarrow { R Q }\) in terms of \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\).
- Use a scalar product to find angle \(R Q P\).