A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Trig Equations
Q5
CAIE P1 2011 June — Question 5
Exam Board
CAIE
Module
P1 (Pure Mathematics 1)
Year
2011
Session
June
Topic
Trig Equations
5
Show that the equation \(2 \tan ^ { 2 } \theta \sin ^ { 2 } \theta = 1\) can be written in the form $$2 \sin ^ { 4 } \theta + \sin ^ { 2 } \theta - 1 = 0 .$$
Hence solve the equation \(2 \tan ^ { 2 } \theta \sin ^ { 2 } \theta = 1\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
This paper
(11 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11