CAIE Further Paper 2 2024 June — Question 4

Exam BoardCAIE
ModuleFurther Paper 2 (Further Paper 2)
Year2024
SessionJune
TopicReduction Formulae

4 It is given that, for \(n \geqslant 0 , \mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { \ln 3 } \operatorname { sech } ^ { \mathrm { n } } \mathrm { xdx }\).
  1. Show that, for \(n \geqslant 2\), $$( n - 1 ) \mathrm { I } _ { n } = \left( \frac { 3 } { 5 } \right) ^ { n - 2 } \left( \frac { 4 } { 5 } \right) + ( n - 2 ) \mathrm { I } _ { n - 2 }$$ [You may use the result that \(\frac { \mathrm { d } } { \mathrm { dx } } ( \operatorname { sech } x ) = - \tanh x \operatorname { sech } x\).]
  2. Find the value of \(I _ { 4 }\).