CAIE P1 2009 June — Question 10

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2009
SessionJune
TopicComposite & Inverse Functions

10 The function f is defined by \(\mathrm { f } : x \mapsto 2 x ^ { 2 } - 12 x + 13\) for \(0 \leqslant x \leqslant A\), where \(A\) is a constant.
  1. Express \(\mathrm { f } ( x )\) in the form \(a ( x + b ) ^ { 2 } + c\), where \(a , b\) and \(c\) are constants.
  2. State the value of \(A\) for which the graph of \(y = \mathrm { f } ( x )\) has a line of symmetry.
  3. When \(A\) has this value, find the range of f . The function g is defined by \(\mathrm { g } : x \mapsto 2 x ^ { 2 } - 12 x + 13\) for \(x \geqslant 4\).
  4. Explain why \(g\) has an inverse.
  5. Obtain an expression, in terms of \(x\), for \(\mathrm { g } ^ { - 1 } ( x )\).