CAIE P1 2006 June — Question 10

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2006
SessionJune
TopicChain Rule

10
\includegraphics[max width=\textwidth, alt={}, center]{cbcb15b4-1870-4dfd-b6e9-839aa4601511-4_515_885_662_630} The diagram shows the curve \(y = x ^ { 3 } - 3 x ^ { 2 } - 9 x + k\), where \(k\) is a constant. The curve has a minimum point on the \(x\)-axis.
  1. Find the value of \(k\).
  2. Find the coordinates of the maximum point of the curve.
  3. State the set of values of \(x\) for which \(x ^ { 3 } - 3 x ^ { 2 } - 9 x + k\) is a decreasing function of \(x\).
  4. Find the area of the shaded region.