AQA FP1 — Question 7

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicLinear transformations

7
  1. The transformation T is defined by the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left[ \begin{array} { r r } 0 & - 1 \\ - 1 & 0 \end{array} \right]$$
    1. Describe the transformation T geometrically.
    2. Calculate the matrix product \(\mathbf { A } ^ { 2 }\).
    3. Explain briefly why the transformation T followed by T is the identity transformation.
  2. The matrix \(\mathbf { B }\) is defined by $$\mathbf { B } = \left[ \begin{array} { l l } 1 & 1 \\ 0 & 1 \end{array} \right]$$
    1. Calculate \(\mathbf { B } ^ { 2 } - \mathbf { A } ^ { 2 }\).
    2. Calculate \(( \mathbf { B } + \mathbf { A } ) ( \mathbf { B } - \mathbf { A } )\).

7 (a) The transformation T is defined by the matrix $\mathbf { A }$, where

$$\mathbf { A } = \left[ \begin{array} { r r } 
0 & - 1 \\
- 1 & 0
\end{array} \right]$$

(i) Describe the transformation T geometrically.\\
(ii) Calculate the matrix product $\mathbf { A } ^ { 2 }$.\\
(iii) Explain briefly why the transformation T followed by T is the identity transformation.\\
(b) The matrix $\mathbf { B }$ is defined by

$$\mathbf { B } = \left[ \begin{array} { l l } 
1 & 1 \\
0 & 1
\end{array} \right]$$

(i) Calculate $\mathbf { B } ^ { 2 } - \mathbf { A } ^ { 2 }$.\\
(ii) Calculate $( \mathbf { B } + \mathbf { A } ) ( \mathbf { B } - \mathbf { A } )$.

\hfill \mbox{\textit{AQA FP1  Q7}}