CAIE P3 2014 November — Question 8

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2014
SessionNovember
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicAddition & Double Angle Formulae

8
  1. By first expanding \(\sin ( 2 \theta + \theta )\), show that $$\sin 3 \theta = 3 \sin \theta - 4 \sin ^ { 3 } \theta$$
  2. Show that, after making the substitution \(x = \frac { 2 \sin \theta } { \sqrt { 3 } }\), the equation \(x ^ { 3 } - x + \frac { 1 } { 6 } \sqrt { } 3 = 0\) can be written in the form \(\sin 3 \theta = \frac { 3 } { 4 }\).
  3. Hence solve the equation $$x ^ { 3 } - x + \frac { 1 } { 6 } \sqrt { } 3 = 0$$ giving your answers correct to 3 significant figures.

8 (i) By first expanding $\sin ( 2 \theta + \theta )$, show that

$$\sin 3 \theta = 3 \sin \theta - 4 \sin ^ { 3 } \theta$$

(ii) Show that, after making the substitution $x = \frac { 2 \sin \theta } { \sqrt { 3 } }$, the equation $x ^ { 3 } - x + \frac { 1 } { 6 } \sqrt { } 3 = 0$ can be written in the form $\sin 3 \theta = \frac { 3 } { 4 }$.\\
(iii) Hence solve the equation

$$x ^ { 3 } - x + \frac { 1 } { 6 } \sqrt { } 3 = 0$$

giving your answers correct to 3 significant figures.

\hfill \mbox{\textit{CAIE P3 2014 Q8}}