| Exam Board | CAIE |
|---|---|
| Module | P3 (Pure Mathematics 3) |
| Year | 2014 |
| Session | November |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Fixed Point Iteration |
6 It is given that $\int _ { 1 } ^ { a } \ln ( 2 x ) \mathrm { d } x = 1$, where $a > 1$.\\
(i) Show that $a = \frac { 1 } { 2 } \exp \left( 1 + \frac { \ln 2 } { a } \right)$, where $\exp ( x )$ denotes $\mathrm { e } ^ { x }$.\\
(ii) Use the iterative formula
$$a _ { n + 1 } = \frac { 1 } { 2 } \exp \left( 1 + \frac { \ln 2 } { a _ { n } } \right)$$
to determine the value of $a$ correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
\hfill \mbox{\textit{CAIE P3 2014 Q6}}