| Exam Board | AQA |
|---|---|
| Module | S3 (Statistics 3) |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Poisson Distribution |
6 The random variable $X$ has a Poisson distribution with parameter $\lambda$.\\
(a) Prove that $\mathrm { E } ( X ) = \lambda$.\\
(b) By first proving that $\mathrm { E } ( X ( X - 1 ) ) = \lambda ^ { 2 }$, or otherwise, prove that $\operatorname { Var } ( X ) = \lambda$.
\hfill \mbox{\textit{AQA S3 Q6}}