3 For positive integers \(n\), the sequence of Fibonacci numbers, \(\left\{ \mathrm { F } _ { \mathrm { n } } \right\}\), starts with the terms \(F _ { 1 } = 1 , F _ { 2 } = 1 , F _ { 3 } = 2 , \ldots\) and is given by the recurrence relation \(\mathrm { F } _ { \mathrm { n } } = \mathrm { F } _ { \mathrm { n } - 1 } + \mathrm { F } _ { \mathrm { n } - 2 } ( \mathrm { n } \geqslant 3 )\).
- Show that \(\mathrm { F } _ { 3 \mathrm { k } + 3 } = 2 \mathrm {~F} _ { 3 \mathrm { k } + 1 } + \mathrm { F } _ { 3 \mathrm { k } }\), where \(k\) is a positive integer.
- Prove by induction that \(\mathrm { F } _ { 3 n }\) is even for all positive integers \(n\).