2. The general solution of the second order recurrence relation
$$u _ { n + 2 } + k _ { 1 } u _ { n + 1 } + k _ { 2 } u _ { n } = 0 \quad n \geqslant 0$$
is given by
$$u _ { n } = ( A + B n ) ( - 3 ) ^ { n }$$
where \(A\) and \(B\) are arbitrary non-zero constants.
- Find the value of \(k _ { 1 }\) and the value of \(k _ { 2 }\)
Given that \(u _ { 0 } = u _ { 1 } = 1\)
- find the value of \(A\) and the value of \(B\).