Edexcel FD2 (Further Decision 2) 2022 June

Question 1
View details
  1. Four workers, A, B, C and D, are to be assigned to four tasks, 1, 2, 3 and 4. Each task must be assigned to just one worker and each worker must do only one task.
The cost of assigning each worker to each task is shown in the table below.
The total cost is to be minimised.
1234
A32453448
B37395046
C46444042
D43454852
  1. Reducing rows first, use the Hungarian algorithm to obtain an allocation that minimises the total cost. You must make your method clear and show the table after each stage.
  2. State the minimum total cost.
Question 2
View details
2. The general solution of the second order recurrence relation $$u _ { n + 2 } + k _ { 1 } u _ { n + 1 } + k _ { 2 } u _ { n } = 0 \quad n \geqslant 0$$ is given by $$u _ { n } = ( A + B n ) ( - 3 ) ^ { n }$$ where \(A\) and \(B\) are arbitrary non-zero constants.
  1. Find the value of \(k _ { 1 }\) and the value of \(k _ { 2 }\) Given that \(u _ { 0 } = u _ { 1 } = 1\)
  2. find the value of \(A\) and the value of \(B\).
Question 3
View details
3. The table below shows the transport options, usual travel times, possible delay times and corresponding probabilities of delay for a journey. All times are in minutes.
Transport optionUsual travel timePossible delay timeProbability of delay
\multirow{2}{*}{Car}\multirow{2}{*}{52}100.10
250.02
\multirow{2}{*}{Train}\multirow{2}{*}{45}150.05
250.03
\multirow{2}{*}{Coach}\multirow{2}{*}{55}50.05
150.01
  1. Draw a decision tree to model the transport options and the possible outcomes.
  2. State the minimum expected travel time and the corresponding transport option indicated by the decision tree.
Question 4
View details
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cea07472-f93b-4a7b-b362-89fb8c0af4a9-04_931_1312_219_379} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a capacitated, directed network of pipes. The uncircled number on each arc represents the capacity of the corresponding pipe. The numbers in circles represent an initial flow.
  1. List the saturated arcs.
  2. State the value of the initial flow.
  3. Explain why arc FT cannot be full to capacity.
  4. State the capacity of cut \(C _ { 1 }\) and the capacity of cut \(C _ { 2 }\)
  5. By inspection find one flow-augmenting route to increase the flow by three units. You must state your route.
  6. Prove that, once the flow-augmenting route found in part (e) has been applied, the flow is maximal.
Question 5
View details
5. A standard transportation problem is described in the linear programming formulation below. Let \(X _ { i j }\) be the number of units transported from \(i\) to \(j\)
where \(i \in \{ \mathrm {~A} , \mathrm {~B} , \mathrm { C } , \mathrm { D } \}\) $$j \in \{ \mathrm { R } , \mathrm {~S} , \mathrm {~T} \} \text { and } x _ { i j } \geqslant 0$$ Minimise \(P = 23 x _ { \mathrm { AR } } + 17 x _ { \mathrm { AS } } + 24 x _ { \mathrm { AT } } + 15 x _ { \mathrm { BR } } + 29 x _ { \mathrm { BS } } + 32 x _ { \mathrm { BT } }\) $$+ 25 x _ { \mathrm { CR } } + 25 x _ { \mathrm { CS } } + 27 x _ { \mathrm { CT } } + 19 x _ { \mathrm { DR } } + 20 x _ { \mathrm { DS } } + 25 x _ { \mathrm { DT } }$$ subject to $$\begin{aligned} & \sum x _ { \mathrm { A } j } \leqslant 34
& \sum x _ { \mathrm { B } j } \leqslant 27
& \sum x _ { \mathrm { C } j } \leqslant 41
& \sum x _ { \mathrm { D } j } \leqslant 18
& \sum x _ { i \mathrm { R } } \geqslant 44
& \sum x _ { i \mathrm {~S} } \geqslant 37
& \sum x _ { i \mathrm {~T} } \geqslant k \end{aligned}$$ Given that the problem is balanced,
  1. state the value of \(k\).
  2. Explain precisely what the constraint \(\sum x _ { i \mathrm { R } } \geqslant 44\) means in the transportation problem.
  3. Use the north-west corner method to obtain the cost of an initial solution to this transportation problem.
  4. Perform one iteration of the stepping-stone method to obtain an improved solution. You must make your method clear by showing the route and the
    • shadow costs
    • improvement indices
    • entering cell and exiting cell.
Question 6
View details
  1. Bernie makes garden sheds. He can build up to four sheds each month.
If he builds more than two sheds in any one month, he must hire an additional worker at a cost of \(\pounds 250\) for that month. In any month in which sheds are made, the overhead costs are \(\pounds 35\) for each shed made that month. A maximum of three sheds can be held in storage at the end of any one month, at a cost of \(\pounds 80\) per shed per month. Sheds must be delivered at the end of the month.
The order schedule for sheds is
MonthJanuaryFebruaryMarchAprilMay
Number ordered13352
There are no sheds in storage at the beginning of January and Bernie plans to have no sheds left in storage after the May delivery. Use dynamic programming to determine the production schedule that minimises the costs given above. Complete the working in the table provided in the answer book and state the minimum cost.
Question 7
View details
7.
\multirow{2}{*}{}Player B
Option WOption XOption YOption Z
\multirow{3}{*}{Player A}Option Q43-1-2
Option R-35-4\(k\)
Option S-163-3
A two person zero-sum game is represented by the pay-off matrix for player A shown above. It is given that \(k\) is an integer.
  1. Show that Q is the play-safe option for player A regardless of the value of \(k\). Given that Z is the play-safe option for player B ,
  2. determine the range of possible values of \(k\). You must make your working clear.
  3. Explain why player B should never play option X. You must make your reasoning clear. Player A intends to make a random choice between options \(\mathrm { Q } , \mathrm { R }\) and S , choosing option Q with probability \(p _ { 1 }\), option R with probability \(p _ { 2 }\) and option S with probability \(p _ { 3 }\) Player A wants to find the optimal values of \(p _ { 1 } , p _ { 2 }\) and \(p _ { 3 }\) using the Simplex algorithm.
    Given that \(k > - 4\), player A formulates the following objective function for the corresponding linear program. $$\text { Maximise } P = V \text {, where } V = \text { the value of the original game } + 4$$
    1. Formulate the constraints of the linear programming problem for player A. You should write the constraints as equations.
    2. Write down an initial Simplex tableau, making your variables clear. The Simplex algorithm is used to solve the linear programming problem. It is given that in the final Simplex tableau the optimal value of \(p _ { 1 } = \frac { 7 } { 37 }\), the optimal value of \(p _ { 2 } = \frac { 17 } { 37 }\) and all the slack variables are zero.
  4. Determine the value of \(k\), making your method clear.
Question 8
View details
8. The owner of a new company models the number of customers that the company will have at the end of each month. The owner assumes that
  • a constant proportion, \(p\) (where \(0 < p < 1\) ), of the previous month's customers will be retained for the next month
  • a constant number of new customers, \(k\), will be added each month.
Let \(u _ { n }\) (where \(n \geqslant 1\) ) represent the number of customers that the company will have at the end of \(n\) months. The company has 5000 customers at the end of the first month.
  1. By setting up a first order recurrence relation for \(u _ { n + 1 }\) in terms of \(u _ { n }\), determine an expression for \(u _ { n }\) in terms of \(n , p\) and \(k\). The owner believes that \(95 \%\) of the previous month’s customers will be retained each month and that there will be 10000 new customers each month. According to the model, the company will first have at least 135000 customers by the end of the \(m\) th month.
  2. Using logarithms, determine the value of \(m\). Please check the examination details below before entering your candidate information \section*{Further Mathematics} Advanced
    PAPER 4D: Decision Mathematics 2 \section*{Answer Book} Do not return the question paper with the answer book.
    1.
    1234
    A32453448
    B37395046
    C46444042
    D43454852
    You may not need to use all of these tables.
    1234
    A
    B
    C
    D
    1234
    A
    B
    C
    D
    1234
    A
    B
    C
    D
    1234
    A
    B
    C
    D
    VALV SIHI NI IIIIIM ION OC
    VIAV SIUL NI JAIIM ION OC
    VIAV SIHI NI III IM ION OC
    1234
    A
    B
    C
    D
    1234
    \(A\)
    \(B\)
    \(C\)
    \(D\)
    1234
    A
    B
    C
    D
    1234
    A
    B
    C
    D
    1234
    A
    B
    C
    D
    2.
    VAMV SIHI NI IIIHM ION OOVIAV SIHI NI JIIIM I ON OCVJYV SIHI NI JIIIM ION OC
    3. 4. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{cea07472-f93b-4a7b-b362-89fb8c0af4a9-16_936_1317_255_376} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} 5.
  3. \(R\)\(S\)\(T\)
    \(A\)
    \(B\)
    \(C\)
    \(D\)
    \(R\)\(S\)\(T\)
    \(A\)
    \(B\)
    \(C\)
    \(D\)
    \(R\)\(S\)\(T\)
    \(A\)
    \(B\)
    \(C\)
    \(D\)
    \(R\)\(S\)\(T\)
    \(A\)
    \(B\)
    \(C\)
    \(D\)
    \(R\)\(S\)\(T\)
    \(A\)
    \(B\)
    \(C\)
    \(D\)
    6.
    StageStateActionDestinationValue
    May200160
    11080 + 35
    02070
    StageStateActionDestinationValue
    MonthJanuaryFebruaryMarchAprilMay
    Number made
    Minimum cost: \(\_\_\_\_\)
    7. Player A \begin{table}[h]
    \captionsetup{labelformat=empty} \caption{Player B}
    Option WOption XOption YOption Z
    Option Q43-1-2
    Option R-35-4\(k\)
    Option S-163-3
    \end{table} The tableau for (d)(ii) can be found at the bottom of page 16
    b.v.Value
    \includegraphics[max width=\textwidth, alt={}]{cea07472-f93b-4a7b-b362-89fb8c0af4a9-24_56_77_2348_182}
    P
    8.