Edexcel FD2 2020 June — Question 6

Exam BoardEdexcel
ModuleFD2 (Further Decision 2)
Year2020
SessionJune
TopicDynamic Programming

6.
\multirow{6}{*}{Player A}Player B
\multirow[b]{2}{*}{Option Q}Option XOption YOption Z
153
Option R4-31
Option S2-4-2
Option T3-20
A two person zero-sum game is represented by the pay-off matrix for player A, shown above.
  1. Explain, with justification, why this matrix may be reduced to a \(3 \times 3\) matrix by removing option S from player A's choices.
  2. Verify that there is no stable solution to the reduced game. Player A intends to make a random choice between options \(\mathrm { Q } , \mathrm { R }\) and T , choosing option Q with probability \(p _ { 1 }\), option R with probability \(p _ { 2 }\) and option T with probability \(p _ { 3 }\) Player A wants to find the optimal values of \(p _ { 1 } , p _ { 2 }\) and \(p _ { 3 }\) using the Simplex algorithm. Player A formulates the following linear programme, writing the constraints as inequalities. Maximise \(P = V\), where \(V =\) the value of original game + 3 $$\begin{aligned} \text { subject to } & V \leqslant 4 p _ { 1 } + 7 p _ { 2 } + 6 p _ { 3 }
    & V \leqslant 8 p _ { 1 } + p _ { 3 }
    & V \leqslant 6 p _ { 1 } + 4 p _ { 2 } + 3 p _ { 3 }
    & p _ { 1 } + p _ { 2 } + p _ { 3 } \leqslant 1
    & p _ { 1 } \geqslant 0 , p _ { 2 } \geqslant 0 , p _ { 3 } \geqslant 0 , V \geqslant 0 \end{aligned}$$
  3. Explain why \(V\) cannot exceed any of the following expressions $$4 p _ { 1 } + 7 p _ { 2 } + 6 p _ { 3 } \quad 8 p _ { 1 } + p _ { 3 } \quad 6 p _ { 1 } + 4 p _ { 2 } + 3 p _ { 3 }$$
  4. Explain why it is necessary to use the constraint \(p _ { 1 } + p _ { 2 } + p _ { 3 } \leqslant 1\) The Simplex algorithm is used to solve the linear programming problem.
    Given that the optimal value of \(p _ { 1 } = \frac { 7 } { 11 }\) and the optimal value of \(p _ { 3 } = 0\)
  5. calculate the value of the game to player A .
    (3) Player B intends to make a random choice between options \(\mathrm { X } , \mathrm { Y }\) and Z , choosing option X with probability \(q _ { 1 }\), option Y with probability \(q _ { 2 }\) and option Z with probability \(q _ { 3 }\)
  6. Determine the optimal strategy for player B, making your working clear.