AQA Further Paper 3 Discrete 2019 June — Question 4

Exam BoardAQA
ModuleFurther Paper 3 Discrete (Further Paper 3 Discrete)
Year2019
SessionJune
TopicGraph Theory Fundamentals

4 The connected planar graph \(P\) has the adjacency matrix
\cline { 2 - 6 } \multicolumn{1}{c|}{}\(A\)\(B\)\(C\)\(D\)\(E\)
\(A\)01101
\(B\)10101
\(C\)11011
\(D\)00101
\(E\)11110
4
  1. Draw \(P\) 4
  2. Using Euler's formula for connected planar graphs, show that \(P\) has exactly 5 faces. 4
  3. Ore's theorem states that a simple graph with \(n\) vertices is Hamiltonian if, for every pair of vertices \(X\) and \(Y\) which are not adjacent, $$\text { degree of } X + \text { degree of } Y \geq n$$ where \(n \geq 3\)
    Using Ore's theorem, prove that the graph \(P\) is Hamiltonian.
    Fully justify your answer.