AQA Further Paper 2 2021 June — Question 13 4 marks

Exam BoardAQA
ModuleFurther Paper 2 (Further Paper 2)
Year2021
SessionJune
Marks4
TopicComplex numbers 2

13
  1. Two of the solutions to the equation \(\cos 6 \theta = 0\) are \(\theta = \frac { \pi } { 4 }\) and \(\theta = \frac { 3 \pi } { 4 }\)
    Find the other solutions to the equation \(\cos 6 \theta = 0\) for \(0 \leq \theta \leq \pi\) 13
  2. Use de Moivre's theorem to show that $$\cos 6 \theta = 32 \cos ^ { 6 } \theta - 48 \cos ^ { 4 } \theta + 18 \cos ^ { 2 } \theta - 1$$ 13
  3. Use the fact that \(\theta = \frac { \pi } { 4 }\) and \(\theta = \frac { 3 \pi } { 4 }\) are solutions to the equation \(\cos 6 \theta = 0\) to find a factor of \(32 \cos ^ { 6 } \theta - 48 \cos ^ { 4 } \theta + 18 \cos ^ { 2 } \theta - 1\) in the form ( \(a \cos ^ { 2 } \theta + b\) ), where \(a\) and \(b\) are integers.
    [0pt] [4 marks]
  4. Hence show that $$\cos \left( \frac { 11 \pi } { 12 } \right) = - \sqrt { \frac { 2 + \sqrt { 3 } } { 4 } }$$ \includegraphics[max width=\textwidth, alt={}, center]{13abb93f-2fef-465c-980c-3b412de06618-25_2492_1721_217_150}