AQA Further Paper 2 2021 June — Question 12

Exam BoardAQA
ModuleFurther Paper 2 (Further Paper 2)
Year2021
SessionJune
TopicIntegration by Parts

12 The integral \(S _ { n }\) is defined by $$S _ { n } = \int _ { 0 } ^ { a } x ^ { n } \sinh x \mathrm {~d} x \quad ( n \geq 0 )$$ 12
  1. Show that for \(n \geq 2\) $$S _ { n } = n ( n - 1 ) S _ { n - 2 } + a ^ { n } \cosh a - n a ^ { n - 1 } \sinh a$$
    12
  2. Hence show that \(\int _ { 0 } ^ { 1 } x ^ { 4 } \sinh x d x = \frac { 9 } { 2 } e + \frac { 65 } { 2 } e ^ { - 1 } - 24\)