- \hspace{0pt} [In this question \(\mathbf { i }\) and \(\mathbf { j }\) are horizontal unit vectors due east and due north respectively and position vectors are given relative to the fixed point \(O\).]
A particle \(P\) moves with constant acceleration.
At time \(t = 0\), the particle is at \(O\) and is moving with velocity ( \(2 \mathbf { i } - 3 \mathbf { j }\) ) \(\mathrm { ms } ^ { - 1 }\)
At time \(t = 2\) seconds, \(P\) is at the point \(A\) with position vector ( \(7 \mathbf { i } - 10 \mathbf { j }\) ) m.
- Show that the magnitude of the acceleration of \(P\) is \(2.5 \mathrm {~m} \mathrm {~s} ^ { - 2 }\)
At the instant when \(P\) leaves the point \(A\), the acceleration of \(P\) changes so that \(P\) now moves with constant acceleration ( \(4 \mathbf { i } + 8.8 \mathbf { j }\) ) \(\mathrm { m } \mathrm { s } ^ { - 2 }\)
At the instant when \(P\) reaches the point \(B\), the direction of motion of \(P\) is north east.
- Find the time it takes for \(P\) to travel from \(A\) to \(B\).