6.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8f3dbcb4-3260-4493-a230-12577b4ed691-12_520_1072_616_388}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
A car moves along a straight horizontal road. At time \(t = 0\), the velocity of the car is \(U \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The car then accelerates with constant acceleration \(a \mathrm {~m} \mathrm {~s} ^ { - 2 }\) for \(T\) seconds. The car travels a distance \(D\) metres during these \(T\) seconds.
Figure 1 shows the velocity-time graph for the motion of the car for \(0 \leqslant t \leqslant T\).
Using the graph, show that \(D = U T + 1 / 2 a T ^ { 2 }\).
(No credit will be given for answers which use any of the kinematics (suvat) formulae listed under Mechanics in the AS Mathematics section of the formulae booklet.)