AQA Paper 2 2023 June — Question 8

Exam BoardAQA
ModulePaper 2 (Paper 2)
Year2023
SessionJune
TopicReciprocal Trig & Identities

8
  1. Given that \(\cos \theta \neq \pm 1\), prove the identity $$\frac { 1 } { 1 - \cos \theta } + \frac { 1 } { 1 + \cos \theta } \equiv 2 \operatorname { cosec } ^ { 2 } \theta$$ 8
  2. Hence, find the set of values of \(A\) for which the equation $$\frac { 1 } { 1 - \cos \theta } + \frac { 1 } { 1 + \cos \theta } = A$$ has real solutions.
    Fully justify your answer.
    8
  3. Given that \(\theta\) is obtuse and $$\frac { 1 } { 1 - \cos \theta } + \frac { 1 } { 1 + \cos \theta } = 16$$ find the exact value of \(\cot \theta\)