AQA Paper 1 2022 June — Question 15

Exam BoardAQA
ModulePaper 1 (Paper 1)
Year2022
SessionJune
TopicIntegration using inverse trig and hyperbolic functions

15
  1. Given that $$y = \operatorname { cosec } \theta$$ 15
    1. Express \(y\) in terms of \(\sin \theta\). 15
  2. (ii) Hence, prove that $$\frac { \mathrm { d } y } { \mathrm {~d} \theta } = - \operatorname { cosec } \theta \cot \theta$$ 15
  3. (iii) Show that $$\frac { \sqrt { y ^ { 2 } - 1 } } { y } = \cos \theta \quad \text { for } 0 < \theta < \frac { \pi } { 2 }$$ 15
    1. Use the substitution $$x = 2 \operatorname { cosec } u$$ to show that $$\int \frac { 1 } { x ^ { 2 } \sqrt { x ^ { 2 } - 4 } } \mathrm {~d} x \quad \text { for } x > 2$$ can be written as $$k \int \sin u \mathrm {~d} u$$ where \(k\) is a constant to be found.
      15
  4. (ii) Hence, show $$\int \frac { 1 } { x ^ { 2 } \sqrt { x ^ { 2 } - 4 } } \mathrm {~d} x = \frac { \sqrt { x ^ { 2 } - 4 } } { 4 x } + c \quad \text { for } x > 2$$ where \(c\) is a constant.
    \includegraphics[max width=\textwidth, alt={}, center]{22ff390e-1360-43bd-8c7f-3d2b58627e91-32_2492_1721_217_150}
    \includegraphics[max width=\textwidth, alt={}]{22ff390e-1360-43bd-8c7f-3d2b58627e91-36_2496_1721_214_148}