| Exam Board | AQA |
| Module | Paper 1 (Paper 1) |
| Year | 2019 |
| Session | June |
| Topic | Differentiating Transcendental Functions |
2 Given \(y = \mathrm { e } ^ { k x }\), where \(k\) is a constant, find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
Circle your answer.
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { e } ^ { k x } \quad \frac { \mathrm {~d} y } { \mathrm {~d} x } = k \mathrm { e } ^ { k x } \quad \frac { \mathrm {~d} y } { \mathrm {~d} x } = k x \mathrm { e } ^ { k x - 1 } \quad \frac { \mathrm {~d} y } { \mathrm {~d} x } = \frac { \mathrm { e } ^ { k x } } { k }$$