12 A particle \(P\) lies at rest on a smooth horizontal table.
A constant resultant force, \(\mathbf { F }\) newtons, is then applied to P .
As a result \(P\) moves in a straight line with constant acceleration \(\left[ \begin{array} { l } 8
6 \end{array} \right] \mathrm { ms } ^ { - 2 }\)
12
- Show that the magnitude of the acceleration of \(P\) is \(10 \mathrm {~ms} ^ { - 2 }\)
12
- Find the speed of \(P\) after 3 seconds.
12 - Given that \(\mathbf { F } = \left[ \begin{array} { c } 2
1.5 \end{array} \right] \mathrm { N }\), find the mass of P .