OCR H240/02 2023 June — Question 1

Exam BoardOCR
ModuleH240/02 (Pure Mathematics and Statistics)
Year2023
SessionJune
TopicQuadratic Functions

1
    1. Express \(x ^ { 2 } - 8 x + 11\) in the form \(( x - a ) ^ { 2 } + b\) where \(a\) and \(b\) are constants.
    2. Hence write down the minimum value of \(x ^ { 2 } - 8 x + 11\).
  1. Determine the value of the constant \(k\) for which the equation \(x ^ { 2 } - 8 x + 11 = k\) has two equal roots.
    \(2 \xrightarrow { \text { The points } } O\) and \(A\) have position vectors \(\left( \begin{array} { l } 0
    0
    0 \end{array} \right)\) and \(\left( \begin{array} { l } 6
    0
    8 \end{array} \right)\) respectively. The point \(P\) is such that \(\overrightarrow { O P } = k \overrightarrow { O A }\), where \(k\) is a non-zero constant.
  2. Find, in terms of \(k\), the length of \(O P\). Point \(B\) has position vector \(\left( \begin{array} { l } 1
    2
    3 \end{array} \right)\) and angle \(O P B\) is a right angle.
  3. Determine the value of \(k\).