AQA D2 2015 June — Question 1 2 marks

Exam BoardAQA
ModuleD2 (Decision Mathematics 2)
Year2015
SessionJune
Marks2
TopicCritical Path Analysis

1 Figure 2, on the page opposite, shows an activity diagram for a project. Each activity requires one worker. The duration required for each activity is given in hours.
  1. On Figure 1 below, complete the precedence table.
  2. Find the earliest start time and the latest finish time for each activity and insert their values on Figure 2.
  3. List the critical paths.
  4. Find the float time of activity \(E\).
  5. Using Figure 3 opposite, draw a Gantt diagram to illustrate how the project can be completed in the minimum time, assuming that each activity is to start as early as possible.
  6. Given that there is only one worker available for the project, find the minimum completion time for the project.
  7. Given that there are two workers available for the project, find the minimum completion time for the project. Show a suitable allocation of tasks to the two workers.
    [0pt] [2 marks] \begin{table}[h]
    \captionsetup{labelformat=empty} \caption{Figure 1}
    ActivityImmediate predecessor(s)
    A
    B
    C
    D
    E
    \(F\)
    G
    \(H\)
    I
    J
    \end{table} \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{b0f9523e-51dd-495f-99ec-4724243b5619-03_1071_1561_376_278}
    \end{figure} \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 3} \includegraphics[alt={},max width=\textwidth]{b0f9523e-51dd-495f-99ec-4724243b5619-03_801_1301_1644_420}
    \end{figure}