AQA D2 2009 June — Question 3

Exam BoardAQA
ModuleD2 (Decision Mathematics 2)
Year2009
SessionJune
TopicMatchings and Allocation

3 Five lecturers were given the following scores when matched against criteria for teaching five courses in a college.
Course 1Course 2Course 3Course 4Course 5
Ron131391013
Sam1314121715
Tom161081414
Una1114121610
Viv1214141315
Each lecturer is to be allocated to exactly one of the courses so as to maximise the total score of the five lecturers.
  1. Explain why the Hungarian algorithm may be used if each number, \(x\), in the table is replaced by \(17 - x\).
  2. Form a new table by subtracting each number in the table above from 17. Hence show that, by reducing rows first and then columns, the resulting table of values is as below.
    00330
    43402
    06722
    52306
    31020
  3. Show that the zeros in the table in part (b) can be covered with two horizontal and two vertical lines. Hence use the Hungarian algorithm to reduce the table to a form where five lines are needed to cover the zeros.
  4. Hence find the possible allocations of courses to the five lecturers so that the total score is maximised.
  5. State the value of the maximum total score.