AQA D2 2009 January — Question 1

Exam BoardAQA
ModuleD2 (Decision Mathematics 2)
Year2009
SessionJanuary
TopicMatchings and Allocation

1 The times taken in minutes for five people, \(\mathrm { P } , \mathrm { Q } , \mathrm { R } , \mathrm { S }\) and T , to complete each of five different tasks are recorded in the table.
PQRST
Task 11720191717
Task 21918181815
Task 31316161412
Task 41313151313
Task 51011121413
Using the Hungarian algorithm, each of the five people is to be allocated to a different task so that the total time for completing the five tasks is minimised.
  1. By reducing the columns first and then the rows, show that the new table of values is as follows.
    35301
    64320
    35410
    32301
    00011
  2. Show that the zeros in the table in part (a) can be covered with three lines, and use adjustments to produce a table where five lines are required to cover the zeros.
  3. Hence find the two possible ways of allocating the five people to the five tasks so that the total completion time is minimised.
  4. Find the minimum total time for completing the five tasks.