AQA D1 2016 June — Question 5

Exam BoardAQA
ModuleD1 (Decision Mathematics 1)
Year2016
SessionJune
TopicShortest Path

5 A fair comes to town one year and sets up its rides in two large fields that are separated by a river. The diagram shows the ten main rides, at \(A , B , C , \ldots , J\). The numbers on the edges represent the times, in minutes, it takes to walk between pairs of rides. A footbridge connects the rides at \(D\) and \(F\).
    1. Use Dijkstra's algorithm on the diagram below to find the minimum time to walk from \(A\) to each of the other main rides.
    2. Write down the route corresponding to the minimum time to walk from \(A\) to \(G\).
  1. The following year, the fair returns. In addition to the information shown on the diagram, another footbridge has been built to connect the rides at \(E\) and \(G\). This reduces the time taken to travel from \(A\) to \(G\), but the time taken to travel from \(A\) to \(J\) is not reduced. The time to walk across the footbridge from \(E\) to \(G\) is \(x\) minutes, where \(x\) is an integer. Find two inequalities for \(x\) and hence state the value of \(x\). \section*{Answer space for question 5}

    1. \includegraphics[max width=\textwidth, alt={}, center]{fb95068f-f76d-492a-b385-bce17b26ae30-12_659_1591_1692_223}