AQA D1 2014 June — Question 5 6 marks

Exam BoardAQA
ModuleD1 (Decision Mathematics 1)
Year2014
SessionJune
Marks6
TopicLinear Programming

5 The feasible region of a linear programming problem is determined by the following: $$\begin{aligned} x & \geqslant 1
y & \geqslant 3
x + y & \geqslant 5
x + y & \leqslant 12
3 x + 8 y & \leqslant 64 \end{aligned}$$
  1. On the grid below, draw a suitable diagram to represent the inequalities and indicate the feasible region.
  2. Use your diagram to find, on the feasible region:
    1. the maximum value of \(3 x + y\);
    2. the maximum value of \(2 x + 3 y\);
    3. the minimum value of \(- 2 x + y\). In each case, state the coordinates of the point corresponding to your answer.
      [0pt] [6 marks]