3 [Figure 1, printed on the insert, is provided for use in this question.]
The feasible region of a linear programming problem is represented by the following:
$$\begin{aligned}
x \geqslant 0 , y & \geqslant 0
x + 4 y & \leqslant 36
4 x + y & \leqslant 68
y & \leqslant 2 x
y & \geqslant \frac { 1 } { 4 } x
\end{aligned}$$
- On Figure 1, draw a suitable diagram to represent the inequalities and indicate the feasible region.
- Use your diagram to find the maximum value of \(P\), stating the corresponding coordinates, on the feasible region, in the case where:
- \(P = x + 5 y\);
- \(\quad P = 5 x + y\).