AQA FP1 2010 January — Question 4

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2010
SessionJanuary
TopicMatrices

4 It is given that $$\mathbf { A } = \left[ \begin{array} { l l } 1 & 4
3 & 1 \end{array} \right]$$ and that \(\mathbf { I }\) is the \(2 \times 2\) identity matrix.
  1. Show that \(( \mathbf { A } - \mathbf { I } ) ^ { 2 } = k \mathbf { I }\) for some integer \(k\).
  2. Given further that $$\mathbf { B } = \left[ \begin{array} { l l } 1 & 3
    p & 1 \end{array} \right]$$ find the integer \(p\) such that $$( \mathbf { A } - \mathbf { B } ) ^ { 2 } = ( \mathbf { A } - \mathbf { I } ) ^ { 2 }$$