AQA FP1 2005 January — Question 9

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2005
SessionJanuary
TopicPolynomial Division & Manipulation

9 The function f is defined by $$f ( x ) = \frac { x ^ { 2 } + 2 x + 2 } { x ^ { 2 } }$$
  1. Write down the equations of the two asymptotes to the curve \(y = \mathrm { f } ( x )\).
  2. By considering the expression \(x ^ { 2 } + 2 x + 2\) :
    1. show that the graph of \(y = \mathrm { f } ( x )\) does not intersect the \(x\)-axis;
    2. find the non-real roots of the equation \(\mathrm { f } ( x ) = 0\).
    1. Show that, if the equation \(\mathrm { f } ( x ) = k\) has two equal roots, then $$4 - 8 ( 1 - k ) = 0$$
    2. Deduce that the graph of \(y = \mathrm { f } ( x )\) has exactly one stationary point and find its coordinates.