AQA M2 2009 June — Question 7

Exam BoardAQA
ModuleM2 (Mechanics 2)
Year2009
SessionJune
TopicCircular Motion 2

7 In crazy golf, a golf ball is hit so that it starts to move in a vertical circle on the inside of a smooth cylinder. Model the golf ball as a particle, \(P\), of mass \(m\). The circular path of the golf ball has radius \(a\) and centre \(O\). At time \(t\), the angle between \(O P\) and the horizontal is \(\theta\), as shown in the diagram. The golf ball has speed \(u\) at the lowest point of its circular path.
\includegraphics[max width=\textwidth, alt={}, center]{9cfa110c-ee11-447a-b21a-3f436432e27d-6_739_742_719_641}
  1. Show that, while the golf ball is in contact with the cylinder, the reaction of the cylinder on the golf ball is $$\frac { m u ^ { 2 } } { a } - 3 m g \sin \theta - 2 m g$$
  2. Given that \(u = \sqrt { 3 a g }\), the golf ball will not complete a vertical circle inside the cylinder. Find the angle which \(O P\) makes with the horizontal when the golf ball leaves the surface of the cylinder.
    (4 marks)