AQA M2 2007 January — Question 7

Exam BoardAQA
ModuleM2 (Mechanics 2)
Year2007
SessionJanuary
TopicWork, energy and Power 1

7 A motorcycle has a maximum power of 72 kilowatts. The motorcycle and its rider are travelling along a straight horizontal road. When they are moving at a speed of \(\mathrm { V } \mathrm { m } \mathrm { s } ^ { - 1 }\), they experience a total resistance force of magnitude \(k V\) newtons, where \(k\) is a constant.
  1. The maximum speed of the motorcycle and its rider is \(60 \mathrm {~ms} ^ { - 1 }\). Show that \(k = 20\).
  2. When the motorcycle is travelling at \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), the rider allows the motorcycle to freewheel so that the only horizontal force acting is the resistance force. When the motorcycle has been freewheeling for \(t\) seconds, its speed is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and the magnitude of the resistance force is \(20 v\) newtons. The mass of the motorcycle and its rider is 500 kg .
    1. Show that \(\frac { \mathrm { d } v } { \mathrm {~d} t } = - \frac { v } { 25 }\).
    2. Hence find the time that it takes for the speed of the motorcycle to reduce from \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) to \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
      (6 marks)