AQA M2 2007 January — Question 5

Exam BoardAQA
ModuleM2 (Mechanics 2)
Year2007
SessionJanuary
TopicCircular Motion 1

5 Tom is on a fairground ride.
Tom's position vector, \(\mathbf { r }\) metres, at time \(t\) seconds is given by $$\mathbf { r } = 2 \cos t \mathbf { i } + 2 \sin t \mathbf { j } + ( 10 - 0.4 t ) \mathbf { k }$$ The perpendicular unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are in the horizontal plane and the unit vector \(\mathbf { k }\) is directed vertically upwards.
    1. Find Tom's position vector when \(t = 0\).
    2. Find Tom's position vector when \(t = 2 \pi\).
    3. Write down the first two values of \(t\) for which Tom is directly below his starting point.
  1. Find an expression for Tom's velocity at time \(t\).
  2. Tom has mass 25 kg . Show that the resultant force acting on Tom during the motion has constant magnitude. State the magnitude of the resultant force.
    (5 marks)