A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Statistics
Poisson Distribution
Q6
AQA S3 2006 June — Question 6
Exam Board
AQA
Module
S3 (Statistics 3)
Year
2006
Session
June
Topic
Poisson Distribution
Type
Proving Poisson properties from first principles
6 The random variable \(X\) has a Poisson distribution with parameter \(\lambda\).
Prove that \(\mathrm { E } ( X ) = \lambda\).
By first proving that \(\mathrm { E } ( X ( X - 1 ) ) = \lambda ^ { 2 }\), or otherwise, prove that \(\operatorname { Var } ( X ) = \lambda\).
This paper
(7 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7