OCR S2 — Question 7

Exam BoardOCR
ModuleS2 (Statistics 2)
TopicHypothesis test of a normal distribution

7 The random variable \(X\) has the distribution \(\mathrm { N } \left( \mu , 8 ^ { 2 } \right)\). The mean of a random sample of 12 observations of \(X\) is denoted by \(\bar { X }\). A test is carried out at the \(1 \%\) significance level of the null hypothesis \(\mathrm { H } _ { 0 } : \mu = 80\) against the alternative hypothesis \(\mathrm { H } _ { 1 } : \mu < 80\). The test is summarised as follows: 'Reject \(\mathrm { H } _ { 0 }\) if \(\bar { X } < c\); otherwise do not reject \(\mathrm { H } _ { 0 } { } ^ { \prime }\).
  1. Calculate the value of \(c\).
  2. Assuming that \(\mu = 80\), state whether the conclusion of the test is correct, results in a Type I error, or results in a Type II error if:
    (a) \(\bar { X } = 74.0\),
    (b) \(\bar { X } = 75.0\).
  3. Independent repetitions of the above test, using the value of \(c\) found in part (i), suggest that in fact the probability of rejecting the null hypothesis is 0.06 . Use this information to calculate the value of \(\mu\).