AQA S2 2009 June — Question 4

Exam BoardAQA
ModuleS2 (Statistics 2)
Year2009
SessionJune
TopicContinuous Probability Distributions and Random Variables
TypeCompare mean and median using probability

4 The continuous random variable \(X\) has probability density function given by $$f ( x ) = \left\{ \begin{array} { c c } \frac { 1 } { 2 } & 0 \leqslant x \leqslant 1
\frac { 3 - x } { 4 } & 1 \leqslant x \leqslant 3
0 & \text { otherwise } \end{array} \right.$$
  1. Sketch the graph of f.
  2. Explain why the value of \(\eta\), the median of \(X\), is 1 .
  3. Show that the value of \(\mu\), the mean of \(X\), is \(\frac { 13 } { 12 }\).
  4. Find \(\mathrm { P } ( X < 3 \mu - \eta )\).