AQA S1 2015 June — Question 5

Exam BoardAQA
ModuleS1 (Statistics 1)
Year2015
SessionJune
TopicNormal Distribution
TypeIndependent probability calculations

5
  1. Wooden lawn edging is supplied in 1.8 m length rolls. The actual length, \(X\) metres, of a roll may be modelled by a normal distribution with mean 1.81 and standard deviation 0.08 . Determine the probability that a randomly selected roll has length:
    1. less than 1.90 m ;
    2. greater than 1.85 m ;
    3. between 1.81 m and 1.85 m .
  2. Plastic lawn edging is supplied in 9 m length rolls. The actual length, \(Y\) metres, of a roll may be modelled by a normal distribution with mean \(\mu\) and standard deviation \(\sigma\). An analysis of a batch of rolls, selected at random, showed that $$\mathrm { P } ( Y < 9.25 ) = 0.88$$
    1. Use this probability to find the value of \(z\) such that $$9.25 - \mu = z \times \sigma$$ where \(z\) is a value of \(Z \sim \mathrm {~N} ( 0,1 )\).
    2. Given also that $$\mathrm { P } ( Y > 8.75 ) = 0.975$$ find values for \(\mu\) and \(\sigma\).