AQA S1 2005 January — Question 5

Exam BoardAQA
ModuleS1 (Statistics 1)
Year2005
SessionJanuary
TopicBinomial Distribution
TypeProbability of range of values

5 Each evening Aaron sets his alarm for 7 am. He believes that the probability that he wakes before his alarm rings each morning is 0.4 , and is independent from morning to morning.
  1. Assuming that Aaron's belief is correct, determine the probability that, during a week (7 mornings), he wakes before his alarm rings:
    1. on 2 or fewer mornings;
    2. on more than 1 but fewer than 5 mornings.
  2. Assuming that Aaron's belief is correct, calculate the probability that, during a 4 -week period, he wakes before his alarm rings on exactly 7 mornings.
  3. Assuming that Aaron's belief is correct, calculate values for the mean and standard deviation of the number of mornings in a week when Aaron wakes before his alarm rings.
    (2 marks)
  4. During a 50-week period, Aaron records, each week, the number of mornings on which he wakes before his alarm rings. The results are as follows.
    Number of mornings01234567
    Frequency108775544
    1. Calculate the mean and standard deviation of these data.
    2. State, giving reasons, whether your answers to part (d)(i) support Aaron's belief that the probability that he wakes before his alarm rings each morning is 0.4 , and is independent from morning to morning.
      (3 marks)