OCR C3 — Question 8

Exam BoardOCR
ModuleC3 (Core Mathematics 3)
TopicSign Change & Interval Methods
TypeSign Change with Function Evaluation

8
\includegraphics[max width=\textwidth, alt={}, center]{ceca0210-939e-4797-8ee1-8bf663534fcd-03_579_901_959_623} The diagram shows part of each of the curves \(y = e ^ { \frac { 1 } { 5 } x }\) and \(y = \sqrt [ 3 ] { } ( 3 x + 8 )\). The curves meet, as shown in the diagram, at the point \(P\). The region \(R\), shaded in the diagram, is bounded by the two curves and by the \(y\)-axis.
  1. Show by calculation that the \(x\)-coordinate of \(P\) lies between 5.2 and 5.3.
  2. Show that the \(x\)-coordinate of \(P\) satisfies the equation \(x = \frac { 5 } { 3 } \ln ( 3 x + 8 )\).
  3. Use an iterative formula, based on the equation in part (ii), to find the \(x\)-coordinate of \(P\) correct to 2 decimal places.
  4. Use integration, and your answer to part (iii), to find an approximate value of the area of the region \(R\).